报告人:马天龙,厦门大学博士生
报告人简介:马天龙,曾任职青海大学副教授,目前在厦门大学攻读博士生学位,担任美国《Mathematical Reviews》评论员。目前主要从事拟阵的Tutte多项式、图的匹配相关课题的研究。在Electron. J. Combin.,J. Comb. Optim.,Discrete Appl. Math.,Theoret. Comput. Sci.等期刊发表论文20余篇。
题目:Maximum size of a graph with given fractional matching number
时间:2023年5月5日(星期五)下午2:30-5:30
地点:永利集团城西校区理科楼126教室
摘要:For three integers n,k,d, we determine the maximum size of a graph on n vertices with fractional matching number k and maximum degree at most d. As a consequence, we obtain the maximum size of a graph with given number of vertices and fractional matching number. This partially confirms a conjecture proposed by Alon et al. in [J. Combin. Theory Ser. A 119 (2012) 1200–1215] on the maximum size of r-uniform hypergraph with a fractional matching number for the special case when r=2. This is a joint work with Jianguo Qian and Chao Shi.